Công thức tính thể tích khối chóp và khối lăng trụ

Chia sẻ công thức tính thể tích khối chóp, lăng trụ và các bài tập vận dụng thực tế trong các đề thi đại học hiện nay.

Trong toán học hình học, tính thể tích của các hình học không gian như khối chóp và lăng trụ là một khái niệm quan trọng, các dạng toán này thường xuất hiện trong các đề THPTQG.

Bài viết này, thayphu sẽ cung cấp cho bạn công thức chi tiết để tính thể tích của khối chóp và lăng trụ, kèm theo các bài tập vận dụng thực tế để giúp bạn hiểu rõ hơn về cách áp dụng chúng trong môn Toán hình học Không gian lớp 12.

Công thức tính thể tích khối chóp

Khối chóp là một hình học không gian có đáy là một hình đa giác và các cạnh từ đỉnh của đáy đến một điểm duy nhất trên mặt phẳng nằm ngoài đáy. Để tính thể tích khối chóp, ta có công thức như sau:

V=⅓ x S xh

Trong đó ta có:

  • V: là thể tích của khối chóp
  • S: là diện tích đáy của khối chóp
  • h: là chiều cao của khối chóp (tính từ đỉnh của khối chóp đến mặt đáy)

Công thức tính thể tích lăng trụ

Lăng trụ là một hình học không gian có đáy là một hình tròn và các cạnh từ đỉnh của đáy đến một điểm duy nhất trên mặt phẳng nằm song song với đáy. Để tính thể tích lăng trụ, ta sử dụng công thức sau:

V = S x h

Trong đó ta có:

  • V: là thể tích của lăng trụ đó
  • S: là diện tích đáy của lăng trụ
  • h: là chiều cao của lăng trụ

Ngoài ra, lăng trụ đứng cũng có những dạng hình hộp đặc biệt như hình hộp chữ nhật và hình lập phương. Ta có công thức của 2 dạng này như sau:

  • Thể tích khối hình hộp chữ nhật:

V = a x b x c

Trong đó:

  • V: là thể tích của hình hộp
  • a, b, c: lần lượt là kích thước của các cạnh khối hình hộp chữ nhật

  • Thể tích khối lập phương:

V=a3

Trong đó:

  • V là thể tích khối lập phương
  • a là độ dài của cạnh.

Các bài tập áp dụng

Bài tập tính thể tích khối chóp

Bài tập 1: Cho một hình chóp S.ABCD có mặt đáy là hình vuông cạnh a. SA vuông góc với mặt phẳng ABCD. Cạnh bên SB hợp với mặt đáy một góc 60 độ. Tính thể tích của khối chóp S.ABCD theo a.

cong thuc tinh the tich khoi chop lang tru 1 jpg

Gợi ý lời giải:

Ta có: SA vuông góc với (ABCD) => SA = h(SA là đường cao của khối chóp)

Dựa vào công thức tính thể tích khối chóp, ta có:

V = ⅓ x S x h

S = a2 (do đáy là hình vuông cạnh a)

  • (SB, ABCD) =60 (đề bài)
  • SB giao với ABCD tại B
  • SA vuông góc (ABCD)

=> góc SBA = 60 độ

Mà tam giác SAB có góc A = 90 độ

=> tan60 = SA/a

Suy ra cạnh SA = a3

Vậy thể tích khối chóp S.ABCD là

cong thuc tinh the tich khoi chop lang tru 2 jpg

Bài tập 2: Cho khối chóp S.ABCD có ABCD là hình vuông cạnh a. Có tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Hãy tính thể tích của khối chóp S.ABCD theo a.

cong thuc tinh the tich khoi chop lang tru 3 jpg

Gợi ý lời giải:

Ta có: (SAB) vuông góc với (ABCD)

  • (SAB) giao với (ABCD) tại AB
  • Kẻ SH vuông góc AB

=> SH vuông với (ABCD)

Theo ông thức tính thể tích khối chóp, ta có:

V = ⅓ x S x h

cong thuc tinh the tich khoi chop lang tru 4 jpg

Bài tập luyện tập về tính thể tích khối lăng trụ

Bài tập 1: Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại B và BA = BC =1. Cạnh A’B tạo với mặt đáy (ABC) góc 60 độ, hãy tính thể tích khối lăng trụ ABC.A’B’C’.

cong thuc tinh the tich khoi chop lang tru 5 jpg

Gợi ý lời giải:

Ta có:

(A’B,ABC) =60 độ

A’B giao với (ABC) = B

Từ A’ có AA’ vuông góc với đáy

=> góc A’BA =60 độ

Dựa vào công thức tính thể tích hình lăng trụ, ta có:

V = S x h

  • S = ½ x BA x BC = ½

  • Tam giác A’AB, góc A = 90 độ

=> tan60 = h/1 => h = căn 3

Vậy suy ra thể tích của khối lăng trụ ABC.A’B’C’ là:

cong thuc tinh the tich khoi chop lang tru 6 jpg

Bài tập 2: Lăng trụ đứng ABC.A’B’C’ có mặt đáy là tam giác vuông cân tại A, cạnh AB= AC=a và AA’=2a. Hãy tính thể tích khối lăng trụ đã cho.

cong thuc tinh the tich khoi chop lang tru 7 jpg

Gợi ý lời giải:

Theo công thức tính thể tích lăng trụ đứng, ta có:

V = S x h

  • Chiều cao của lăng trụ là AA’=2a

  • S = ½ x ABxAC = ½ .a.a = a^2/2

=> Vậy thể tích của khối lăng trụ ABC.A’B’C’ là V = (a^2/2) x 2a = a^3.

Bài viết Công thức tính thể tích khối chóp và lăng trụ đã cung cấp cho bạn các công thức chi tiết để tính thể tích của khối chóp và lăng trụ, cùng với các bài tập thực tế theo từng dạng khác nhau. Hy vọng rằng thông qua bài viết này, thayphu có thể giúp bạn hiểu thêm về cách tính thể tích của các hình học không gian này và có thể áp dụng chúng thật tốt vào các bài toán trong các đề thi.

Cùng chuyên mục:

Tính giới hạn của hàm số khi x dần tới dương vô cùng hoặc âm vô cùng

Tính giới hạn của hàm số khi x dần tới dương vô cùng hoặc âm vô cùng

Bài viết này hướng dẫn các em nhẩm nhanh kết quả giới hạn của hàm…

Cách chứng minh đường thẳng là tiếp tuyến của đường tròn

Cách chứng minh đường thẳng là tiếp tuyến của đường tròn

Bài viết này nêu 3 cách chứng minh một đường thẳng là tiếp tuyến của…

Cách tìm tệm cận ngang của đồ thị hàm số và bài tập áp dụng

Cách tìm tệm cận ngang của đồ thị hàm số và bài tập áp dụng

Thế nào là Tiệm cận ngang? Tiệm cận ngang của đồ thị hàm số là…

Hiểu kiến thức về hình lăng trụ tam giác đều trong 5 phút

Hiểu kiến thức về hình lăng trụ tam giác đều trong 5 phút

Tìm hiểu về định nghĩa, tính chất và các công thức cần phải nhớ về…

Cách tìm tập xác định của Hàm số mũ, Lũy thừa, Logarit đơn giản

Cách tìm tập xác định của Hàm số mũ, Lũy thừa, Logarit đơn giản

Tìm hiểu kiến thức tìm tập xác định của Hàm số mũ, Lũy thừa, Logarit…

Hiểu kiến thức về hình lăng trụ tứ giác đều trong 5 phút

Hiểu kiến thức về hình lăng trụ tứ giác đều trong 5 phút

Tìm hiểu về định nghĩa, tính chất và các công thức cần phải nhớ về…

Kiến thức phương trình mặt cầu kèm bài tập áp dụng có đáp án

Kiến thức phương trình mặt cầu kèm bài tập áp dụng có đáp án

Tìm hiểu về kiến thức phương trình mặt cầu kèm theo một số dạng bài…

khối đa diện là gì? Nắm vững các loại khối đa diện trong 5 phút

khối đa diện là gì? Nắm vững các loại khối đa diện trong 5 phút

Tìm hiểu chi tiết kiến thức về khối đa diện. Giải thích định nghĩa, các…

MỚI CẬP NHẬT
Top