Bạn đang ở đây

Bài tập chứng minh đẳng thức dùng công thức lượng giác cơ bản

Ảnh của tanphu
tanphu gửi vào T3, 12/04/2016 - 12:01sa

Bài 1. Chứng minh các đẳng thức sau đây

  1. \(\sin^4 x+ \cos^4 x = 1 -2\sin^2 x \cos ^2 x\)
  2. \(\sin^6 x + \cos^6 x =1-3 \sin^2 x \cos^2 x\)
  3. ${{\tan }^{2}}x-{{\sin }^{2}}x={{\tan }^{2}}x{{\sin }^{2}}x$
  4. $\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cot x}=\cos x$
  5. $\dfrac{1+{{\sin }^{2}}x}{1-{{\sin }^{2}}x}=1+2{{\tan }^{2}}x$
  6. $\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cot }^{2}}x-{{\tan }^{2}}x}={{\sin }^{2}}x{{\cos }^{2}}x$
  7. $\dfrac{{{\sin }^{3}}a+{{\cos }^{3}}a}{\sin a+\cos a}=1-\sin a\cos a$
  8. $\dfrac{{{\sin }^{2}}a-{{\cos }^{2}}a}{1+2\sin a\cos a}=\dfrac{\tan a-1}{\tan a+1}$

Bài 2. Chứng minh biểu thức không phụ thuộc \(x\)

  1. $A=2\cos^4{x}-\sin^4{x}+\sin^2{x}\cos^2{x}+3\sin^2{x}$
  2. $B=\dfrac{2}{\tan{x}-1}+\dfrac{\cot x+1}{\cot x-1}$
  3. $C=2(\sin^6{x}+\cos^6{x})-3(\sin^4{x}+\cos^4{x})$
  4. $D=\sin^2{x}\tan^2{x}+2\sin^2{x}-\tan^2{x}+\cos^2{x}$